FPGA implementation of a pulse density neural network with learning ability using simultaneous perturbation

نویسندگان

  • Yutaka Maeda
  • Toshiki Tada
چکیده

Hardware realization is very important when considering wider applications of neural networks (NNs). In particular, hardware NNs with a learning ability are intriguing. In these networks, the learning scheme is of much interest, with the backpropagation method being widely used. A gradient type of learning rule is not easy to realize in an electronic system, since calculation of the gradients for all weights in the network is very difficult. More suitable is the simultaneous perturbation method, since the learning rule requires only forward operations of the network to modify weights unlike the backpropagation method. In addition, pulse density NN systems have some promising properties, as they are robust to noisy situations and can handle analog quantities based on the digital circuits. We describe a field-programmable gate array realization of a pulse density NN using the simultaneous perturbation method as the learning scheme. We confirm the viability of the design and the operation of the actual NN system through some examples.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Pulse Density Hopfield Neural Network System with Learning Capability Using FPGA

In this paper, we present a FPGA Hopfield Neural Network system with learning capability using the simultaneous perturbation learning rule. In the neural network, outputs and internal values are represented by pulse train. That is, analog Hopfield Neural Network with pulse frequency representation is considered. The pulse density representation and the simultaneous perturbation enable the syste...

متن کامل

Pulse Density Recurrent Neural Network Systems with Learning Capability Using FPGA

In this paper, we present FPGA recurrent neural network systems with learning capability using the simultaneous perturbation learning rule. In the neural network systems, outputs and internal values are represented by pulse train. That is, analog recurrent neural networks with pulse frequency representation are considered. The pulse density representation and the simultaneous perturbation enabl...

متن کامل

FPGA implementation of a wavelet neural network with particle swarm optimization learning

This paper introduces implementation of a wavelet neural network (WNN) with learning ability on field programmable gate array (FPGA). A learning algorithm using gradient descent method is not easy to implement in an electronic circuit and has local minimum. A more suitable method is the particle swarm optimization (PSO) that is a population-based optimization algorithm. The PSO is similar to th...

متن کامل

A learning rule of neural networks via simultaneous perturbation and its hardware implementation

-This paper describes a learning rule of neural networks via a simultaneous perturbation and an analog feedforward neural network circuit using the learning rule. The learning rule used here is a stochastic gradient-like algorithm via a simultaneous perturbation. The learning rule requires only forward operations o f the neural network. Therefore, it is suitable for hardware implementation. Fir...

متن کامل

An Analog Neural Network System with Learning Capability Using Simultaneous Perturbation

In this paper, we describe an implementation of analog neural network system with on-line learning capability. A learning rule using the simultaneous perturbation is adopted. Compared with usage of the ordinary back-propagation method, we can easily implement the simultaneous perturbation learning rule. The neural system can monitor weight values and an error value. The exclusive OR problem and...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • IEEE transactions on neural networks

دوره 14 3  شماره 

صفحات  -

تاریخ انتشار 2003